Problem 12.7: During a particular (and peculiar) rainstorm, each cubic meter of air contains 1000 falling drops, each of identical diameter D. (a) Compute the reflectivity factor Z, assuming $D = 1$ mm. (b) Repeat for $D = 2$ mm. (c) By what factor did Z increase on account of a mere two-fold increase in D? (d) Express your answers to (a)–(c) in units of dBZ. (e) If you replace the liquid raindrops with ice spheres of the same size, by how many dBZ will the radar-estimated effective reflectivity Z_e be reduced? (f) Notwithstanding Eq. (12.41), hailstorms are often recognized on radar displays by virtue of their anomalously high Z_e. Why?

$$Z = \int_0^\infty n(D) D^6 \, dD.$$

for ice, $Z_e \sim 0.2 \, Z$ (eq. 12.41). show where that 0.2 factor comes from.

2. WH 4.42 a and b, for a solar zenith angle of 30 degrees. show how you arrive at your answer.

4.42 Consider solar radiation with a zenith angle of 0° that is incident on a layer of aerosols with a single scattering albedo $\omega_0 = 0.85$, an asymmetry factor $g = 0.7$, and an optical thickness $\tau = 0.1$ averaged over the shortwave part of the spectrum. The albedo of the underlying surface is $R_s = 0.15$.

(a) Estimate the fraction of the incident radiation that is backscattered by the aerosol layer in its downward passage through the atmosphere.

Answer: 0.054

(b) Estimate the fraction of the incident radiation that is absorbed by the aerosol layer in its downward passage through the atmosphere.

Answer: 0.014