Dynamics: Nov. 11
Fig. 7.1 Natural coordinates (s, n) defined at point P in a horizontal wind field. Curved arrows represent streamlines.

<table>
<thead>
<tr>
<th></th>
<th>Vectorial</th>
<th>Natural coords.</th>
<th>Cartesian coords.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>$\frac{\partial V}{\partial n}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curvature</td>
<td>$V \frac{\partial \psi}{\partial s}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diffuence</td>
<td>$V \frac{\partial \psi}{\partial n}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stretching</td>
<td>$\frac{\partial V}{\partial s}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorticity ζ</td>
<td>$k \cdot \nabla \times \nabla$</td>
<td>$V \frac{\partial \psi}{\partial s} - \frac{\partial V}{\partial n}$</td>
<td>$\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}$</td>
</tr>
<tr>
<td>Divergence Div∇V</td>
<td>$\nabla \cdot \nabla$</td>
<td>$V \frac{\partial \psi}{\partial n} - \frac{\partial V}{\partial s}$</td>
<td>$\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}$</td>
</tr>
<tr>
<td>Deformation</td>
<td>$-V \frac{\partial \psi}{\partial n} - \frac{\partial V}{\partial s}$</td>
<td>$\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}$</td>
<td></td>
</tr>
</tbody>
</table>

* The signs of properties relating to vorticity are defined as positive for the northern hemisphere.
Which are non-divergent, irrational??
Circulation:

\[C = \oint V_x ds = \iint \xi dA = \iint \text{Div}_H \mathbf{v} dA \]

Circulations often conserved.

Deformation:

\[\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \]

⇒ Flow can be broken down into divergent, rotational, and deformation components

Orthonormal to div, vort.

Flow over mountains
Both deformation and shear strengthen frontal zones.
Effective gravity g, includes centrifugal force

Motion introduces additional force: Coriolis

$$ f = 2\Omega \sin \phi $$

$$ \Omega = 2\pi \text{ rad day}^{-1} = 7.292 \times 10^{-5} \text{ s}^{-1} $$

Flow to right of motion \Rightarrow CW in NH
INERTIAL CIRCLES: less common in atmosphere (less inertia)

2 examples:
• land-sea breeze (Hsu, 1970, MWR)
• mountain slope/valley circulation (Rocky Mountains/Plains)
• katabatic flow?
Motion determined by balance between pressure gradient force, Coriolis force, frictional force

Midlatitude horizontal velocities ~ 10 m/s
$Dv/dt \sim 10^{-4}$ m s$^{-2}$
Coriolis force $\sim fV \sim 10^{-3}$ m s$^{-2}$

Geostrophic wind = balanced pressure/coriolis flow

$F_{x,y} =$ vertical gradient in horizontal momentum

$F = \frac{\partial \tau}{\partial z} \ast 1/\rho$
In Boundary Layer, frictional drag in evidence

Wind speed sub-geostrophic, drifts towards lower pressure

\[fV = |P| \cos \psi \]
Gradient Wind: in regions of high curvature, add the centripetal acceleration to eqn of motion

Sub-geostrophic Super-geostrophic
Thermal Wind: The vertical shear in geostrophic wind is related to the horizontal temperature gradient.

\[
(V_\phi)_2 - (V_\phi)_1 = \frac{1}{f}k \times \nabla(\Phi_2 - \Phi_1) \\
(V_\phi)_2 - (V_\phi)_1 = -\left(\frac{R\ln(p_1/p_2)}{p_2}\right)k \times \nabla(T)
\]

Barotropic atm \Rightarrow grad $T = 0$ \Rightarrow geostrophic wind constant

Equivalent barotropic
Again...

Explains why westerlies strongest At top of troposphere
Do these plots make sense??

30-yr Mean meridional Profile Of temp. and zonal Wind, from Australia to Eastern Siberia, January
Cold advection

Warm advection