last Wednesday:

\[\frac{dI}{dT} = I(\varepsilon) - (1 - \varepsilon) B = \varepsilon - B \]

\[\to I = I_0 e^{-\varepsilon} + \int B e^{-\varepsilon} d\varepsilon \]

absorption \(\varepsilon \) = \(\frac{dI}{dT} = \omega_0 \) assuming no scattering.
\[\frac{d\omega}{dT} = 0 \] peak absorption/emission
assuming a well-mixed gas and density profile that is exponentially decreasing, find this maximum at \(\frac{\lambda_0}{\lambda} \approx 1 \).

absorption by atmospheric gas / methods of calculating IR. sec 4.43

it's all in fact

Fig. 4.7 will

broadening: fig. 4.21

natural: & \text{uncertainty}

Doppler: shifting of frequencies
Pressure: collisional broadening.

\[k = \frac{1}{\sigma_0 \tilde{\nu} \gamma} \exp \left[-\left(\frac{\tilde{\nu} - \nu_0}{\sigma_0} \right)^2 \right] \]

line shape factor
or intensity

Doppler \(\alpha_0 \) half width = \(\frac{\nu_0}{c} \left(\frac{2kT}{m} \right)^{1/2} \) pressure \(\tilde{\nu} \)
Doppler: \(f = \frac{1}{\alpha_0 \pi} \exp \left[- \left(\frac{v - v_0}{\alpha_0} \right)^2 \right] \) \(\omega_1 \) \(\alpha_0 = \frac{v_0}{c} \left(\frac{2 E}{m} \right)^{\frac{1}{2}} \) half width

Pressure (Lorentz):

\[f = \frac{\alpha}{\pi \left[(v - v_0)^2 + \alpha^2 \right]} \] \(\omega \) \(\alpha < \frac{P}{T^2} \)

So Doppler \(\propto T^{-\frac{1}{2}} \)
pressure \(\propto \frac{P}{T^2} \)

\[\uparrow \] \[\text{strahlung} \]
\[\uparrow \]
\[\text{local thermodynamic} \]

Typically these are combined, one \(\alpha + s \) are specified at a given \(T_p \), \(\alpha_p = \alpha_0 \left(\frac{P}{P_0} \right) \left(\frac{T_p}{T} \right)^n \)

can maybe appreciate how difficult it is to formulate a continuum from this...

Lo k-surf

how to get broadband fluxes & heating rates from this?

\[\Phi_{abs} = \sum_{i} \rho_i k_i (v) = \sum_{i} \rho_i (v) \left[k_{\text{cont}} (\tilde{v}_i, v) + \sum_{j} \tilde{S}_j (v) \tilde{f}_j (\tilde{v} - \tilde{v}_j, v) \right] \]

\(N \) constituents
\(M \) absorption lines

HITRAN 1992 model have 709,308 lines. accurate to 5-10%

climate models need something less computationally expensive.

"collided k-distribution"

basic idea shown in fig 4.27:

\[\text{eq 4.49: } \overline{T_v} = \frac{1}{\Delta v} \int e^{-k_{\text{cont}} v} dv = \int e^{-k_{\text{cont}} g} dg. \]

new variable \(g \): prob. distribution of \(\Delta v \)
ordered in increasing \(g \):
\[g = 0 \] for smallest \(k \)
\[g \] for largest

data compression scheme
Reading rates within atmosphere: \[\frac{dF}{dt} = \frac{dE}{dz} \] \[\text{eq. 4.52} \]

A: radiative exchange w/ surface.

B: "cooling by space

C: exchange w/ neighboring layers, note that if

\[B(z) = B(z', \text{isothermal}), \text{then } C = D = 0 \]

in real atmosphere, \(C + D \) is a maximum where \(T \) is a min/max.

(stratosphere can only warm)

\[\left(\frac{dT}{dt} = \frac{SN}{C_0} \right) \left| k \cdot r \left(I_r \cdot B_r \right) d\mu \right. \quad \text{eq 4.54} \]

now backtrack to: RT w/ scattering,

\[\frac{\omega}{4\pi} \left[\mathbf{P}(\alpha, \alpha') \right] I(\alpha') d\alpha' \]

1. properties of various constituents \[\text{sec 4.4.1, fig 4.11} \]
2. multiple scattering
3. formulation in radiative models (2-stream approx.) (multiple

3) satellite remote sensing, \[\text{radiol} \]

1) when \(\frac{\lambda}{\alpha} \) small \(\Rightarrow \) Mie-like scattering, if \(\alpha^2 \) to absorption complete

air molecule