function Y = ode3(odefun,tspan,y0,varargin) %ODE3 Solve differential equations with a non-adaptive method of order 3. % Y = ODE3(ODEFUN,TSPAN,Y0) with TSPAN = [T1, T2, T3, ... TN] integrates % the system of differential equations y' = f(t,y) by stepping from T0 to % T1 to TN. Function ODEFUN(T,Y) must return f(t,y) in a column vector. % The vector Y0 is the initial conditions at T0. Each row in the solution % array Y corresponds to a time specified in TSPAN. % % Y = ODE3(ODEFUN,TSPAN,Y0,P1,P2...) passes the additional parameters % P1,P2... to the derivative function as ODEFUN(T,Y,P1,P2...). % % This is a non-adaptive solver. The step sequence is determined by TSPAN % but the derivative function ODEFUN is evaluated multiple times per step. % The solver implements the Bogacki-Shampine Runge-Kutta method of order 3. % % Example % tspan = 0:0.1:20; % y = ode3(@vdp1,tspan,[2 0]); % plot(tspan,y(:,1)); % solves the system y' = vdp1(t,y) with a constant step size of 0.1, % and plots the first component of the solution. % if ~isnumeric(tspan) error('TSPAN should be a vector of integration steps.'); end if ~isnumeric(y0) error('Y0 should be a vector of initial conditions.'); end h = diff(tspan); if any(sign(h(1))*h <= 0) error('Entries of TSPAN are not in order.') end try f0 = feval(odefun,tspan(1),y0,varargin{:}); catch msg = ['Unable to evaluate the ODEFUN at t0,y0. ',lasterr]; error(msg); end y0 = y0(:); % Make a column vector. if ~isequal(size(y0),size(f0)) error('Inconsistent sizes of Y0 and f(t0,y0).'); end neq = length(y0); N = length(tspan); Y = zeros(neq,N); F = zeros(neq,3); Y(:,1) = y0; for i = 2:N ti = tspan(i-1); hi = h(i-1); yi = Y(:,i-1); F(:,1) = feval(odefun,ti,yi,varargin{:}); F(:,2) = feval(odefun,ti+0.5*hi,yi+0.5*hi*F(:,1),varargin{:}); F(:,3) = feval(odefun,ti+0.75*hi,yi+0.75*hi*F(:,2),varargin{:}); Y(:,i) = yi + (hi/9)*(2*F(:,1) + 3*F(:,2) + 4*F(:,3)); end Y = Y.';