Newsroom
Taking the ‘pulse’ of volcanoes using satellite images
InSAR helps to show ‘inflation’ in advance of volcanic eruptions in Indonesia
November 05, 2012
Averaged 2006-2009 ground velocity map of the west Sunda volcanic region, Indonesia, from ALOS InSAR. Positive velocity (red colors) represents movement towards the satellite (e.g. uplift) and negative velocity (blue colors) movement away from the satellite (e.g. subsidence). Locations of volcanoes are marked by black triangles, historically active volcanoes by red triangles. Insets: zoom into the six inflating volcanoes. Credit: Estelle Chaussard.
“Surveying entire volcanic regions using satellite data is of primary importance to the detection of ground deformation prior to the onset of eruptions. If volcanic inflation is observed, it can help us to predict where the next eruption may occur. Moreover, in regions like Indonesia, where volcanoes are prevalent and pose a threat to millions of people, and where ground-based monitoring is sparse, remote sensing via satellite could become a major forecasting tool,” said Chaussard.
Analyzing more than 800 InSAR images from the Japanese Space Exploration Agency’s ALOS satellite, the team surveyed 79 volcanoes in Indonesia between 2006 and 2009. They detected deformation at six volcanic centers, three of which erupted after the observation period, confirming that inflation is a common precursor of volcanic eruptions at west Sunda volcanoes.
“The notion of detecting deformation prior to a volcanic eruption has been around for a while,” said Amelung, who has been studying active volcanoes for 15 years. “Because this region is so volcanically active, our use of InSAR has been very successful. We now have a tool that can tell us where eruptions are more likely to occur.”
The team will now study other parts of Indonesia and then in the Philippines, also prone to volcanic activity. They will use data from the Japanese Space Agency’s ALOS-2 which will be launched next year.
“The monitoring of changes to the Earth’s surface helps us to better predict the onset of volcanic activity, which can have devastating impacts on human life,” said Amelung. “Like with earthquakes and tsunamis, however, we cannot predict activity with certainty, but we hope that new tools like satellite remote sensing will help us to gather critical information in near real-time so we can anticipate the risk of eruptions and deploy resources in a timely manner.”
This study also reveals that there are regional trends in depths of magma storage. Indonesian volcanoes have magma reservoirs at shallow depths probably due to the tectonic setting of the region, which account for the way the region is deforming. If a volcanic chamber is located close to the surface it is usually associated with a higher risk for significant eruption, thus these observations play a major role in volcanic hazard assessment.
The article entitled “Precursory inflation of shallow magma revervoirs at west Sunda volcanoes detected by InSAR” authored by Chaussard and Amelung appears in Geophysical Research Letters. Support was provided by grants from the National Aeronautics and space Administration (NASA) and the National Science Foundation (NNX09AK72G and EAR-0810214.) ALOS-PALSAR imagery used in the study is copyrighted by the Japanese Space Agency (JAXA).
About the University of Miami’s
Rosenstiel School
The University of Miami is the largest private research
institution in the southeastern United States. The
University’s mission is to provide quality education,
attract and retain outstanding students, support the faculty
and their research, and build an endowment for University
initiatives. Founded in the 1940’s, the Rosenstiel School
of Marine & Atmospheric Science has grown into one of the
world’s premier marine and atmospheric research
institutions. Offering dynamic interdisciplinary academics, the
Rosenstiel School is dedicated to helping communities to better
understand the planet, participating in the establishment of
environmental policies, and aiding in the improvement of
society and quality of life. For more information, please
visit www.rsmas.miami.edu.





