NSF Funds Univ. of Miami, Naval Postgraduate School Research in Ocean Dynamics


MIAMI — June 29, 2012 — Understanding dynamics of mesoscale eddies (motions on the scales of tens to a few hundreds of kilometers) remains one of the fundamental challenges in physical oceanography. While the importance of these eddies in ocean dynamics is now widely accepted, they are still not fully captured by the majority of climate models, and scientists are still struggling to understand how these eddies form and evolve over time.

In particular, it has been discovered that mesoscale variability in the ocean leads to the spontaneous generation of slowly evolving patterns. These formations may become as important for eddy generation, as well-established baroclinic instability. The resulting Large-Scale Eddy-Driven Patterns (LEDPs) represent a substantial portion of the variability in our oceans and can play an important role in the transport of heat, salinity, momentum and carbon. So, it is vital to improve our understanding of these eddy effects, which can impact the accuracy of future climate projections.

Funded by a grant from the National Science Foundation, a new collaborative study between teams led by University of Miami (UM) Associate Professor Igor Kamenkovich and Naval Postgraduate School (NPS) Associate Professor Timour Radko will investigate critical oceanic processes involved in the LEDP dynamics, using a combination of numerical simulations and analytical multi-scale methods. This will make it possible to offer a more complete and realistic description of LEDPs, directly applicable to observations and comprehensive climate models. A combination of approaches will reveal the complex interplay between mesoscale eddies and LEDPs, not available through numerical simulation alone. The project will also help to describe the eddy transport of such important tracers as heat and carbon caused by the LEDPs.

“Advances in the understanding of eddy-induced transport and low frequency variability in the oceans will help to improve climate prediction capabilities, ultimately leading to societal benefits,” said Kamenkovich. “In addition to its oceanographic importance, this study will have significant implications for fundamental fluid mechanics, geophysics and climate science.”

The project team will include Ph.D. candidate Mikhail Rudko, from the UM Rosenstiel School of Marine & Atmospheric Science, postdoctoral associate from the NPS Jason Flanagan, and two graduate Navy students. The idea for this study originated from a sabbatical Radko took in Miami last year, where he was hosted by Kamenkovich in his laboratory at UM.

About the Naval Postgraduate School
Founded in 1909, the mission of the NPS is to provide high-quality, relevant and unique advanced education and research programs that increase the combat effectiveness of the Naval Services, other Armed Forces of the U.S. and our partners, to enhance our national security. A world-class academic institution, NPS offers unique programs focused on joint military applications; critical research; executive, distance and continuing education; and coalition building.

About the University of Miami’s Rosenstiel School
The University of Miami’s mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world. Founded in the 1940’s, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world’s premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit

climate •  dynamics •  national science foundation •  nsf •  research •  eddy •  funding •  dr. igor kamenkovich •  timour radko •