Drawn to the Sea

When Patrick Rynne contacted me on December 11th of last year, he explained that one of Waterlust’s initiatives was to showcase ocean scientists’ fundamental research interest and juxtapose the topic with their personal passions. He said “Obviously your name jumped up immediately. We’d love to produce a piece on you that contrasts your love of freediving with your research”. I was stoked about the idea of a snapshot documentary. I thought it could be a very artistic and powerful way to communicate science to the general public. Drawn to the Sea, the Waterlust 4-minute long video was launched 6 months later, coincidently during the International Coral Reef Symposium (ICRS) which takes place only every four years, and I could not be happier with the outcome. It’s making was a very educational and amazing journey that I’d love to share.

The short video is composed of three major parts: the narration, the footage, and the soundtrack.

Screen Shot 2016-07-14 at 3.10.11 PM

The Narration

Being familiar with my research on fish larvae, Patrick had a story board already in mind, but he asked me of I would prefer to do the narration myself. As far as I remember, water has been my sanctuary and since I am very passionate about my work and about freediving, I found it easy and fun to write the narration below. The hardest part was to make the story short enough to be told in 3-4 minutes. It took however coaching from Patrick to speak into a microphone and many repetitions alone in my office late at night, with complete silence to get it right!

I have always been drawn to the sea. As a kid, I imagined the magic of the aquatic realm and found comfort underwater, mesmerized by the sounds of waves on the shoals and of my heart beat slowing down.

I am a biological oceanographer and a free diver. The ocean is where I push my mind and my body. I study the earliest days of a fishs life, what we call its larval stage. All fish, even those that grow to become very large, begin their lives very small. They may be tiny, but weve learned they are far from defenseless. They are strong and self sufficient having evolved to survive the pelagic life. Like the mantra ek ong kar, they and the ocean are one.

Despite this, they must still find their way through the oceans currents to a safe home like a coral reef where they can live and grow. At first we thought some would find a suitable habitat by chance, while others would be lost in the vast ocean. But today we are discovering a different story. Fish larvae are skilled swimmers and work together by using the light from the sun, and the smells and sounds in the ocean to find their way home. Even when young, they are connected to the sea in ways we dont entirely understand. When I observe them, I cannot help but think they know something about this blue world that I don’t.

Unlike a fish, I cannot extract oxygen from the water. But with long, deep inhales, I have learned to fill my lungs with air and slow the beat of my heart. Underwater, I find peace listening to my pulse slowing down and the sound of water over my body. I sink as pressure increases and I feel the water running faster over my face. I imagine that I am just like the tiny fish I study.

I explore the ocean with others like me, learning how to hold my breath and extend each visit below, just a little bit longer. But no matter how hard I train.my body will eventually force me to leave and return home to the air. Sometimes.in my dreams, I imagine I could hold my breath forever. I feel free. I wonder if I could, would I ever come back?

The Soundtrack

The music actually came after the narration. Despite personal preference for cello or violin, I had to agree that the piano soundtrack chosen by the Waterlust team was perfectly in tune with the narration. They have a lot of experience putting together amazing videos with beautiful soundtracks so it did not take long for them to find the perfect fit.

The Footage

Most of the footage was the result of a weekend session done with the Waterlust team in the Florida Springs. We had a great time freediving with them and their creative angles. Before that, I started organizing all my footage together and Patrick reviewed it and figured out what more was needed. The video needed field and lab footage of larval fish. I had some unique video of groups of damselfish larvae navigating taken by my husband Ricardo (RSMAS Alumni) and I on the Great Barrier Reef a few years ago. This study was recently published in PLoS ONE in December 2015. However, the field of larval fish behavior is relatively undocumented. So Patrick came to my lab and took some radical video of mahi-mahi larvae (generously donated by my UM Rosenstiel School colleagues, Daniel Bennetti and Martin Grosell) with a macro lens shooting at 240 frames per second!

The video also needed freediving clips from travel or from competitions. My first competition was at Deja Blue in October 2013 and my latest trip was at the Dean’s Blue Hole this April 2016, where I regularly service an acoustic pressure instrument that records sounds in a marine sinkhole. However, we still needed some footage of the meditation practice that is part of my freediving training, and of course of the fun part of the freediving with “others like me”. We asked Waterlust Ambassador, Ashley Baird, to join us on that endeavor. Ashley is from central Florida and also a competitive free diver and a great friend, so she was perfect for the role and she kindly accepted!

The best part of making the video was hanging out with the amazing Waterlust team,at Ginnie Springs around a fire camp and freediving under the moonlight. It was my first time visiting the Florida springs. I could not believe that after so many years in Miami, I had missed such natural beauty in Central Florida. The freshwater is so clear that you can see the refraction of the hammocks on the Snell’s window from the bottom of the sink holes.

I hope you enjoy the video and that it will inspire more documentaries of our scientific research at RSMAS and of our passion for the ocean.

 

Claire Paris, Professor – Department of Ocean Sciences, UM Rosenstiel School of Marine and Atmospheric Science

Claire Paris-Limouzy leads the RSMAS Physical-Biological Interactions Lab and is a champion free-diver.

 

 

Faculty Profile: Dr. Claire Paris

As an ocean scientist at the UM Rosenstiel School, Claire Paris spends days observing the movements of tiny fish larvae in a unique underwater drifting laboratory. She has developed scientific instruments to listen to, and observe these important, but often unnoticed, life forms on the reefs and in the open ocean. Another powerful component to her scientific approach is how she interacts with her research subjects underwater. Paris uses her talent as a certified freediver to minimize any human disturbance to her research subjects.

Claire Paris

Claire Paris

“The bubbles from SCUBA disturbs the pelagic environment,” said Paris, a native of South France who spent a lot of time in the ocean as a child. “Freediving makes you feel one with the environment and promotes a sense of peace and fulfillment.”

Paris, a Rosenstiel School alumna (M.S. ’87), is at the top of her game, both as a scientist and freediver. She has led numerous groundbreaking studies, including one that showed that reef fish larvae can smell the presence of coral reefs from as far as several kilometers offshore, and use this odor to find their way home. She also found that fish larvae communicate by emitting sounds.

She has developed unique scientific instruments and sophisticated computer models to predict how fish larvae, as well other planktonic organisms and pollutants are transported with the ocean currents. These tools were instrumental to help track the behavior of oil during the Deepwater Horizon blowout, and continue to be used to simulate the fate of oil, to predict oil spill impacts and to optimize the first response to future spills.

US Freediving Association Team

US Freediving Association Team

She is a member of the United States Freediving Association (USFA) and an AIDA* International-ranked freediver and was selected for Team USA for the Team World Championships in 2014 and for the Individuals World Championships in 2015. She holds a Performance Freediving International (PFI) certification. Claire’s goal is to promote AAUS (American Academy of Underwater Science) scientific freediving nation-wide with the UM Rosenstiel School as a frontrunner.

Finding her potential and having no fear to dive deeper makes her a better scientist, says Paris.

*AIDA: Association Internationale pour le Development de l’Apnee

Connecting Fish and Corals

A new study by UM Rosenstiel School researchers tracked the dispersal of coral and fish larvae on Caribbean reefs and found that fish populations are generally a more interconnected, cohesive unit on reefs than coral populations, with a few exceptions. The UM Rosenstiel School-led study is the first-of-its-kind to use a numerical modeling approach to address connectivity – the exchange of offspring and larvae between geographically disconnected populations – for multiple species with very different life histories.

Trunkfish in the Dry Tortugas. Photo Credit: Jiangang Luo/ UM RSMAS

Trunkfish in the Dry Tortugas. Photo Credit: Jiangang Luo/ UM RSMAS

Understanding connectivity is important for the management of species and networks of marine protected areas. Connectivity enhances resilience of the ecosystem to harmful events, such as bleaching, overfishing and hurricanes, by providing new recruits from distant locations to the damaged reefs.

“The study was motivated by the complexity of conservation efficacy for coral reef ecosystems that are composed of so many different species,” said Rosenstiel School Professor Claire Paris, corresponding author of the paper. “Larval connectivity models contribute valuable information for the protection of marine habitats, especially as the potential for further reef fragmentation and other physical changes to the environment alter both the habitat and the biology of coral reef organisms and their larvae.”

Using the Connectivity Modeling System (CMS), a Rosenstiel School open source numerical model developed in Paris lab, the study tracked larval exchange between more than 3,200 reef areas in the Caribbean for five different species of fish and coral over a five-year period. The researchers found that fish populations are generally more connected than coral populations, with the exception of reef-building corals, which share similar connectivity dynamics for some specific Caribbean regions. For these regions that were identified thanks to high-computing techniques, management can be similar for all species and reef conservation may rely on regional connectivity networks.  This is not the case for other regions that require more species-specific management practices, typically at more local levels as well.

Elkhorn Coral  Photo Credit: NOAA

Elkhorn Coral
Photo Credit: NOAA

The study was published as a Special Feature article in the March 3, 2014 issue of the journal Marine Ecology Progress Series. The paper’s authors include: UM alumni Daniel Holstein, currently a post-doctoral research associate at the University of the Virgin Islands’ Center for Marine and Environmental Studies, and well-known reef ecologist Peter Mumby.

Larval Behavior Film Reaches the Final Round of NSF’s “Creating the Future” Video Contest

When the National Science Foundation announced their “Creating the Future” contest, I was excited to have the opportunity to present my PhD research in the form of a short video. It turned out to be quite challenging to explain my work on underwater soundscapes and larval navigation in just 90 seconds. The film combines unique footage of pelagic fish larvae, recorded by my advisor Claire Paris, as well as audio recordings made on reefs right here in Florida. The final product, called “Sonic Reef,” made it to the final judging round. This means that the film is eligible to win the people’s choice award if it gets enough votes. The $1000 prize money that I could win would be used for field research next summer.

Please vote for “Sonic Reef” by visiting this National Science Foundation website: Click here to vote!

You have to enter your email address – and only once you receive the confirmation email can you cast your official vote.

Thanks for your support!

Erica Staaterman
PhD Student, Applied Marine Physics & Marine Biology and Fisheries
Follow the Rosenstiel School on Twitter: @UMiamiRSMAS
“Like” the Rosenstiel School on Facebook: www.Facebook.com/Rosenstiel School
Circle the Rosenstiel School on Google+ : Rosenstiel School

Understanding Navigational Cues in the Marine Environment

I spent a hot afternoon in late July with the two Principal Investigators (PIs) on a new National Science Foundation (NSF) Ocean Technology and Interdisciplinary Coordination grant entitled “T-LEOST: realTime Larval Environmental and Ocean Signal Tracking: an integrated system for the study of navigational cues in the marine environment.” Instead of meeting in an office, we met by the pool at University of Miami’s main campus.

The goal was to test several new instruments that are part of this project. A drifting behavioral chamber developed by Dr. Claire Paris, one of the PIs, observes the behavior of fish larvae at sea using a camera and a compass system. The orientation the larvae take while tested inside the chamber reveals whether or not they are guided by certain navigational cues, such as a sun compass, odor, or sound.

With the new grant, we are making modifications to the existing chamber, allowing us to observe the behavior of fish in deeper waters, and in response to acoustic cues measured from reefs here in Florida.

To put the chamber into deeper waters and to de-couple it from the water surface, a motorized buoyancy device called the Medusa is being developed by Dr. David Mann of Loggerhead Instruments, the other PI on the grant. An essential step in the development process is to determine the natural rising and sinking

We also tested the capabilities of a pair of underwater speakers that will be mounted to the chamber to play back sounds of coral reefs to the fish. Recordings made in Florida with a hydrophone (developed by Loggerhead Instruments) will be played to fish in order to see whether they demonstrate orientation behavior towards these sounds. Reef soundscapes have been proposed as a cue that fish larvae may use during their journey from the pelagic environment to the reefs.

This is truly an interdisciplinary project, involving physics, biology, and engineering. Spending an afternoon with the experts was a great learning experience for me and we learned about the performance of our instruments in a controlled environment. Next step: the ocean!

Erica Staaterman
PhD Student, Applied Marine Physics & Marine Biology and Fisheries
Follow the Rosenstiel School on Twitter: @UMiamiRSMAS
“Like” the Rosenstiel School on Facebook: www.Facebook.com/Rosenstiel School
Circle the Rosenstiel School on Google+ : Rosenstiel School