RECOVER Launches New Website

Screen Shot 2015-11-05 at 4.13.51 PM

The Gulf of Mexico Research Initiative (GoMRI) consortium RECOVER recently launched their new website at www.miami.edu/recover. It will act as a centralized hub for information regarding the University of Miami Rosenstiel School of Marine and Atmospheric Science led consortium focusing on the effects of crude oil on fish. Visitors to the site can expect to learn about new findings, classroom and virtual learning activities, hatchery tour information, and videos relative to the ongoing work.

Watch an introduction video to the RECOVER project.

Screen Shot 2015-11-05 at 4.09.50 PM

RECOVER (Relationship of Effects of Cardiac Outcomes in fish for Validation of Ecological Risk) is a consortium comprised of seven researchers from four institutions. Led by Professor Martin Grosell, the team is studying the impacts and toxic effects of crude oil on ecologically and commercially important fish from the Gulf of Mexico. Two species that are currently being examined are the pelagic mahi-mahi and the coastal redfish. Studies will range from molecular, cellular, organ level and whole animal physiologic as well as behavior analyses at different life stages. Previous findings by team members have already shown that fish embryos and larvae exposed to crude oil during early development results in malformation of hearts, resulting in mortality or reduced cardiac and swimming performance in surviving individuals.

To learn more about RECOVER and their current findings please visit www.miami.edu/recover and follow them on social media.

Screen Shot 2015-11-05 at 4.11.03 PM

Dan DiNicola

RECOVER Outreach Coordinator

Coral Metabolism and Climate Change

A team of Rosenstiel School researchers and alumni published a new study on the intra-and inter-specific variation of metabolic factors of corals in Florida. Their study is important to better understand if some coral will be more resilient than others to climate change.

“Knowing which coral species will be ‘winners’ on reefs of the future will help people be aware of what reefs might look like in the coming decades,” said UM Rosenstiel School alumna Erica Towle.

Mustard hill coral. Credit: Johnmartindavies/wikicommons

Mustard hill coral. Credit: Johnmartindavies/wikicommons

For the experiment, Towle and her team from the UM Corals and Climate Change Lab collected three common species of corals from the Florida Reef Tract, which extends from the Florida Keys to Stuart in Martin County, during two seasonal points (winter and summer).

The species mustard hill coral (Porites astreoides) great star coral (Montastraea cavernosa) and mountainous star coral (Orbicella faveolata) were analyzed for growth rate, lipid content, algal symbiont density, and chlorophyll content. The surface area of the corals were also measured using a 3-D scanner supplied by UM Alumnus Derek Manzello at the NOAA Atlantic Oceanographic and Meteorological Laboratories.

Great star coral. Credit NOAA

Great star coral. Credit NOAA

The team’s field data agreed with population-level trends that great star coral and mustard hill coral are doing well in the Florida Keys, and may be “winners” on reefs of the future. They point out that future work needed to understand factors driving resilience of “winner” species.

“It’s important for us to start to understand which corals will be dominant on reefs of the future so we can get a better sense of which species to focus stronger conservation efforts on,” said Towle.

regionalstudiesMSThe study, “In-situ measurement of metabolic status in three coral species from the Florida Reef Tract,” was published online in the journal Regional Studies in Marine Science. The work was supported by the NOAA Coral Reef Conservation Program. The study’s authors include: Erica K. Towle; UM Rosenstiel School Professor Chris Landgon; and Renée Carlton and Derek P. Manzello of the NOAA Atlantic Oceanographic and Meteorological Laboratories.

What is Aquaponics?

photo-1Aquaponics is an ecosystem approach to food production. In one recirculating system, aquaponics maintains a school of fish, a variety of plants, and a healthy colony of beneficial bacteria. The bacteria are the real heroes here. They rapidly consume toxic ammonia waste produced by the fish and turn it into nitrates on which the plants can thrive.
It all boils down to the nitrogen cycle. The fish feed contains nitrogen in the form of protein, which is the primary source of energy for the fish. As part of their digestion and respiration, the fish excrete nitrogen as ammonia both directly from their gills and indirectly through their solid waste. This waste ammonia will rapidly accumulate in recirculating aquaculture systems, and is quite toxic to fish even at relatively low levels. For aquaculture, ammonia must either be flushed out of the system or consumed in a biofilter.
A biofilter is nothing more than an elaborate bacteria condominium. In the biofilter, there is a lot of substrate surface area for bacteria to call home. Two kinds of bacteria have been identified as the main beneficial actors in a biofilter: Nitrosomonas and Nitrobacter. In turn, these bacteria convert ammonia into nitrite and then nitrate. This is good for the fish because nitrate is far less toxic than ammonia. This is great for the plants because nitrate is great plant food.
After the bacteria in the biofilter have eaten up the ammonia and spat out nitrate, the plants uptake these chemicals and prevent them from building up. Thus, the plants effectively purify the water for the fish in the aquaculture system.
The plants get great fertilizer, the fish get pristine water, and the bacteria make it all happen.
Unlike aquaculture, aquaponics allows no effluent to leave the culture system for the environment to break down. Unlike hydroponics, aquaponics systems do not require the entire system’s water to be dumped down the drain every two weeks. With aquaponics, you can produce edible fish and plants, waste little water, and produce no external effluent.

Aquaponics at the University of Miami
At the University of Miami (UM) Experimental Hatchery, the main focus has been on raising marine pelagic finfish in semi-recirculating tank systems.
By leveraging the considerable aquaculture experience available in the faculty, staff and students at the hatchery, a successful aquaponics system has been started at the UM Experimental Hatchery to showcase the technologies relied upon in aquaponics systems. We are raising Tilapia in a completely recirculating aquaponics system, with no wastewater going down the drain.
For the hydroponic component of our aquaponic system, we are using a media bed filled with expanded clay and we are experimenting with a vertical tower system which allows greater production per square foot. We are currently growing two crops: basil and spearmint. If you have eaten the pesto at the restaurant SALT on campus since late in the fall semester of this year, there’s a good chance you’ve enjoyed the basil grown in our aquaponics system.
The Aquaponics program at the UM Experimental Hatchery continues to grow. Aquaponics is a great way to eliminate the waste effluent being produced at aquaculture facilities and hydroponic plant production facilities. We are engaging with a variety of commercial and educational facilities which are interested in developing aquaponics operations.

–Joshua Grubman, UM Rosenstiel School part-time lecturer

 

Students Collaborate on One-of-a-kind Coral Bleaching Study

Thanks to an award from the Rosenstiel School’s Graduate Career Development Fund, a collaborative, graduate student-led research team has a one-of-a-kind opportunity to study how corals recover from mass bleaching events.

Five students – Jay Fisch, Erica Towle, Crawford Drury, Phil Kushlan and Rivah Winter – from three different labs across the Rosenstiel School campus have come together to design and execute a field study of an important reef-building coral, Orbicella faveolata, commonly known as Mountainous Star Coral, that suffered during the widespread coral bleaching event at Horseshoe Reef in the Florida Keys during the summer of 2014.

RSMAS graduate students: Phil Kushlan, Erica Towle, Crawford Drury, Jay Fisch, and Rivah Winter

RSMAS graduate students (from left to right): Phil Kushlan, Erica Towle, Crawford Drury, Jay Fisch, and Rivah Winter

Historic information previously collected at the site, combined with collections over the next year will allow the student team to study changes in coral symbiosis and metabolism and to measure individual colony response and recovery following a bleaching event. The research project will provide scientists with valuable new information on the relationship between recovery patterns and subsequent reproductive output.

“Recovery of reefs depends on both the recovery of the surviving individuals as well as the input of new individuals through reproduction,” said the students.

The students received a total of $3000 from the Graduate Career Development Fund. The students are Ph.D. candidates in Lirman’s Benthic Ecology Lab, Baker’s Coral Reef and Climate Change Lab and Langdon’s Coral and Climate Change Lab.

Rescue a Reef Update

130813_112247_054_CoralRestoration Coral reef with out planted stag horn corals.

It’s been over 2 years since Dr. Diego Lirman’s Benthic Ecology Lab at RSMAS began outplanting nursery reared staghorn corals (Acropora cervicornis) to degraded reefs as part of one of the largest Acropora restoration projects along the Florida Reef Tract. Today, those corals are making a significant impact on the structure and function of Miami’s reefs.

The University of Miami Rosenstiel School of Marine and Atmospheric Science began growing colonies of the threatened staghorn coral in underwater nurseries starting with only 200 small fragments collected from existing wild colonies. To date, UM’s nurseries have produced over 6,000 healthy corals. Beginning in 2012, over 2,500 staghorn corals were carefully transplanted to their new homes on local reefs in Miami-Dade County. Over 85% of outplanted corals have survived to become part of the natural habitat and have grown to equal 243 meters of new staghorn! That is over 603% more coral than was originally outplanted! This is a significant increase in the number of Acropora colonies on local reefs and will help bridge spatial gaps between existing populations to enhance sexual reproduction and genetic diversity.The Benthic Ecology Lab has learned valuable lessons from their initial restoration success and has developed methods and techniques to increase the survival and growth of outplanted corals. In addition, important informtion about nursery and outplant site selection, growth and productivity variation between genotypes, effects of predation, and recovery from bleaching have been investigated to provide researchers and managers with essential conservation tools for the recovery of threatened staghorn corals.

–Stephanie Schopmeyer, Senior Research Associate II, Lirman Lab

N In Plot 3 P46 Initial size of staghorn coral fragment outplanted in 2012 (5 cm)

IMG_1360-1 Growth of staghorn coral two years after outplanting onto local reef (390 cm)

UM coral scientist studies at Centre Scientifique de Monaco

As I write this blog, I am looking out the window at the famous Port Hercule in Monaco and see all of the beautiful yachts and racing sailboats.  And the best part is – I’m in my office!  Allow me to back-track: I am a 5th year Ph.D. candidate in Dr. Chris Langdon’s lab here at RSMAS.  I study indicators of resilience to climate change stressors in Florida Reef Tract corals.  Two years ago I met Dr. Christine Ferrier-Pages at the International Coral Reef Symposium.  Christine is the director of the Coral Eco-physiology team at the Centre Scientifique de Monaco (CSM), and I have admired her work on coral feeding for years.  By maintaining contact with her after we met at the conference, and through another colleague of Chris Langdon’s at a French university, I was offered the opportunity to participate in a seven-week collaboration in Christine’s lab in Monaco.  Together, we are studying the combined effects of nutrient enrichment (eutrophication), coral feeding, and elevated temperature stress on coral growth and physiology.  The lab facilities here are unparalleled, and it is truly an honor and a privilege for me to complete the last chapter of my dissertation at this institution.

View of Port Hercule in Monaco

View of Port Hercule in Monaco

Here’s a little history about CSM: it was founded in 1960 at the request of Prince Rainier III, Prince of Monaco, to provide the Principality of Monaco with the means of carrying out oceanographic research and to support governmental and international organizations responsible for the protection and conservation of marine life.  Since the late 1990s, the CSM has been a leader in coral reef biology, specializing in biomineralization research and climate change effects on corals.  The ocean and the issues surrounding it have always been on the forefront of causes important to the royal family of Monaco.  In addition to the CSM, Monaco also boasts an extensive oceanography museum and aquarium which draws international attention.

So what has it been like to work here so far?  One thing I have found a little challenging is learning to run an experiment in another language.  While most of the researchers here speak English (their publications are normally submitted in English,) French is their native language and is most commonly spoken in the lab.  I speak conversational French pretty well, but I have to learn basic experiment terms in French; words like tubes, flow rate, and probe, to name a few, were all new to me in the French language.

For now, my post-work view is the Mediterranean Sea, but I know in a few weeks a sunset view overlooking Biscayne Bay from the Wetlab patio will be calling my name…

Until then,

Erica Towle, Ph.D. Candidate, Marine Biology and Ecology