MPO 650 / AMP 650 – Coastal Ocean Circulation

Villy Kourafalou, Brian Haus, Ad Reniers

COURSE DESCRIPTION

This course seeks to expand upper level students understanding of coastal oceanographic physical processes. There will be a concentrated focus on coastal circulation, waves and their interaction. We will cover scales ranging from boundary currents to shelf processes to the surf zone. Recent developments in modeling and observational approaches will be highlighted along with their applications to ecological, human health and management issues.

COURSE OUTLINE

1. Introduction
 Physical characteristics of coastal waters

2. Equations governing coastal circulation
 Basic equations of circulation
 Shallow water equations

3. Tides and tidal currents

4. Wind-driven circulation
 Coastal sea level set up/set down
 Upwelling, downwelling and coastal jets
 Storms and extreme events

5. Surface waves
 Wave generation, dissipation and propagation
 Wave induced transport
 Global and local models
 Wave current interaction/wave blocking
 Wave set-up

6. Wind/wave-driven surges

7. Topographic effects on coastal currents
 Frictional adjustment
 Inclined plane beach model

8. Exchange processes and mixing
 Advection and diffusion of seawater
 Coastal Eddies
Lagrangian Coherent Structures
Pollution dispersion

9. Thermohaline shelf circulation

10. Dynamics of river plumes
 Transport and fate of freshwater discharges
 Ephemeral rivers

11. Biogeochemical coastal processes
 Nutrient transport
 Sediment transport
 Larval transport

12. Coastal to offshore interactions
 Boundary currents
 Shelfbreak eddies and fronts
 Inner shelf and surfzone exchange

13. Numerical models of shelf circulation

14. Integrated Ocean Observing Systems
 HF radar
 Buoy networks
 Data assimilation in numerical models

15. Remote Sensing of the Coastal Ocean
 SST
 Interferometric-SAR
 Optical properties
 Lidar/bathymetric mapping

16. Coastal management
 Real time predictions
 Mitigation

GRADING
Emphasis will be given in critical thinking and the development of the ability to
synthesize class material to address research questions. Students will develop a project
that will replace a final exam, graded as a 10-page (double spaced) Report and as a
presentation in class. Homework will include assignments for paper reading and
discussion. A mid-term exam will be given. The final grade will be based on:
Homework: 20%, Mid-term exam: 20%, class Project Report: 40%, class Project
Presentation: 20%