Iron fertilization and the *Trichodesmium* response on the West Florida shelf

Jason M. Lenes¹, Brian P. Darrow, Christopher Cattrall, Cynthia A. Heil, Michael Callahan, Gabriel A. Vargo, and Robert H. Byrne
College of Marine Science, University of South Florida, 140 Seventh Avenue South, St. Petersburg, Florida 33701

Joseph M. Prospero
Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149

David E. Bates
Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, Florida 33146

Kent A. Fanning
College of Marine Science, University of South Florida, 140 Seventh Avenue South, St. Petersburg, Florida 33701

John J. Walsh
College of Marine Science, University of South Florida, 140 Seventh Avenue South, St. Petersburg, Florida 33701; Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149

Abstract

Prior laboratory studies of *Trichodesmium* have shown a high iron requirement that is consistent with the biochemical demand for iron in the enzyme nitrogenase. Summer delivery of iron, in the form of Saharan dust, may provide an explanation for *Trichodesmium* blooms observed in offshore waters of the West Florida shelf over the last 50 yr. During ecology and oceanography of harmful algal blooms (ECOHAB) field studies, background iron levels (0.1-0.5 nmol kg⁻¹) were found at the surface during periods of minimal dust delivery (May 2000 and October 1999). In contrast, total dissolved iron concentrations on the order of ~16 nmol kg⁻¹ were measured at the West Florida shelf-break after a July 1999 Saharan dust event that was identified by advanced very high resolution radiometer (AVHRR) imagery, ground-based radiometers, air mass analysis, and aerosol samples (dust and non-sea-salt nitrate) collected throughout South Florida. The *Trichodesmium* response following this July dust event was a 100-fold increase over background biomass, reaching a surface stock of ~20 colonies L⁻¹. Surface dissolved concentrations of both inorganic and organic phosphorus decreased below detectable limits during this bloom. Dissolved organic nitrogen concentrations associated with the bloom (15-20 µM) were 3-4-fold greater than background and much larger than ambient NO₃⁻ concentrations (<0.5 µmol kg⁻¹). If all dissolved organic nitrogen (DON) is converted to urea and ammonium, this organic nitrogen could have supported the red tide of >20 µg chl L⁻¹ of the toxic dinoflagellate, *Gymnodinium breve*, found along the West Florida coast during October 1999.

¹Corresponding author (lenes@seas.marine.usf.edu)