Cobia Aquaculture: Expanding in Americas, Caribbean

Summary:
A marine fish species with excellent characteristics for commercial aquaculture, cobia is receiving much attention in Latin American and Caribbean countries. Modern hatcheries are being built in the regions, and growout facilities are working to improve production efficiency. Continued success now should yield an expected boom in cobia culture in the near future.

Daniel Benetti, Ph.D.
Chairman, Division of Marine Affairs and Policy
Associate Professor and Director of Aquaculture
University of Miami Rosenstiel School of Marine and Atmospheric Science
4600 Rickenbacker Causeway
Miami, Florida 33149 USA
dbenetti@rsmas.miami.edu

Over the past decade, significant advances have been made in the culture of cobia, Rachycentron canadum. A marine fish species with excellent biological and market characteristics for commercial aquaculture, cobia has received much attention in many Latin American and Caribbean countries.

Research spearheaded by the University of Miami Experimental Hatchery in the last five years has progressed in the areas of broodstock procurement, management and spawning; larviculture; nutrition and sustainable growout technology. Much work remains to improve production efficiency, but countries throughout the Americas and the Caribbean – including Martinique, Puerto Rico, Dominican Republic, the United States, Mexico, Belize, Panama, Colombia, Ecuador and Brazil – are now producing cobia.

Albeit small compared to the numbers for other aquaculture species, global production of cobia is expected to exceed 25,000 mt in 2008 (mostly from Asia), with only about 500-1,000 mt produced in the United States, Caribbean and South America this year. The expanding industry is expected to boom in the next few years, when farmed cobia production in these regions could reach an estimated 2,000-3,000 mt within the next three years and 3,000-5,000 mt in five years.

New Hatcheries
Driven primarily by the anticipated cobia boom, new multimillion-dollar marine fish hatcheries are being built. In Brazil, four hatcheries in the states of São Paulo, Bahia, Espírito Santo and Pernambuco are working with cobia. In Belize, Marine Farms ASA – a company which already cultures cobia in Vietnam – is building a large-scale hatchery to produce cobia fingerling to stock a producing commercial cage farm. In Panama, the large-scale commercial shrimp hatchery Farallón Aquaculture, which has facilities in several Latin American countries, is also constructing a large hatchery to produce cobia seedstock for the expanding industry in that country. In Mexico, Ixoye Tropicales retrofitted an old shrimp hatchery to produce cobia fingerlings in 2007. A similar approach is being used by Ocean Farm in Ecuador, which adapted a large shrimp hatchery for the production of marine fish such as cobia, snapper and Pacific yellowtail.

The National Laboratory of Aquaculture, a state-of-the-art marine fish hatchery, just opened in Brazil. One of the most modern hatcheries on the continent, it is already in production utilizing technology transferred from the University of Miami through a memorandum of understanding with TWB S.A. and the Special Secretariat for Aquaculture and Fisheries, a partnership between the Brazilian private sector and government.

Similar cooperative agreements have been signed with Ecuador’s Na-

After successfully harvesting cobia from its Seastation cage system for five years, Snapperfarm celebrated the first commercial harvest from its Aquapod sea cage system in 2007. Cobia fingerlings initially grew at varied rates. Fingerling quality is of primary importance for growth performance. Photos by Brian O’Hanlon, Snapperfarm.
tional Center for Aquaculture and Marine Research (CENAIM-ESPOL) and Colombia’s Center for Aquacul-
ture Research (CENIACUA-ACUANAL) to further the de-
velopment of marine fish aquaculture in these countries
with technology transfer and training support. All these
efforts will provide additional seedstock needed for in-
dustry expansion in the future.

Growout at Snapperfarm

Experiences gained at a commercial sea cage farm
yielded varied and useful information on cobia growout.
In 2006, Snapperfarm Inc. stocked cobia fingerlings from
different hatcheries for growout in its cages off Culebra,
Puerto Rico. Within a few weeks, each crop of fish from the
various hatcheries was performing very differently. After
six years growing cobia in its submerged cages, Snapper-
farm found that growth rates for cobia can vary from 2 to 6
kg/year, depending on stocking density, temperature, feed
quality and especially the quality of fingerlings.

One crop grew very well, while early signs of deformi-
ties were evident in the second crop and a third crop ex-
hibited very slow growth. Genetics and nutritional fac-
tors may have affected the early development of the fish
in the hatcheries. Also, Snapperfarm raised all three
crops on different diets, in two different cage designs and
at different densities – all of which could contribute to
the varied performances early in the production cycle.

However, several months after stocking, all three
crops were switched to a standard diet and the densities
of two cages were matched, yet the performance still var-
ied significantly from cage to cage. This led farm man-
gers to believe that the quality of the hatchery-produced
fingerlings is of paramount importance.

Despite these issues, Snapperfarm showed that prop-
erly planned, sited and operated open-ocean aquaculture
operations can produce considerable amounts of high-
quality seafood without causing significant environmen-
tal impacts. In fact, data from independent environmen-
tal assessments funded by the U.S. government being
conducted by the University of Puerto Rico and Univer-
sity of Miami have shown no significant impact detected
in oceanic waters surrounding the company’s cages. This
suggests that future expansion could occur in a sustain-
able manner.