MPO 731: Air-Sea Interactions
Fall 2016,
Tu/Th 3:00-4:20,
MSC 329

Lynn K. (Nick) Shay
Department of Ocean Sciences

Description:

Oceanic and atmospheric mixed layers including fluxes of heat, momentum, moisture and salt between the ocean and atmosphere; vertical distribution of energy sources and sinks at the interface including the importance of surface currents; forced upper ocean dynamics, the role of surface waves on the air-sea exchange processes and ocean mixed layer processes.

1. Introduction: Basic Processes (Week 1)
 A. Definitions
 B. Governing Equations/Laws

2. Instabilities (Week 1-2)
 A. Atmospheric
 B. Oceanic

3. Reynolds Decomposition (Weeks 2-4)
 A. Generating turbulence
 B. Approximations and Consequences
 C. TKE Equations

4. Oceanic Mixed Layers (Weeks 5-8)
 A. Bulk Treatments
 B. Kraus-Turner/PRT
 C. Deardorf
 D. TKE
 E. Surface Wave Effects on OPBL dynamics
 F. Langmuir Cells

5. Atmospheric Boundary Layer (Weeks 8-10)
 A. Friction velocity and surface layer
 B. Log layer
 C. Methods of determining wind stress
 D. Surface Wave Effects on APBL fluxes
 E. Nondimensional Scaling/Buckingham Pi Theorem

6. Heat Fluxes (Weeks 10-12)
 A. Bulk aerodynamic formulas
 B. Obukhov Length Scales
 C. Approximations
 D. Role of SSTs
 E. Precipitation and Evaporation
 F. Methods of determining heat fluxes
7. Forced Upper Ocean Response (Weeks 13-15)
A. Ekman Dynamics
B. Projection of wind stress onto baroclinic modes
C. Near-inertial (fronts, tropical and extratropical cyclones)
D. Wind Forced Equatorial Kelvin Waves

Books: On Reserve

Selected manuscripts as assigned.

Grading:

1. Homework assignments: 50%
2. Mid Term Exam: 25%
3. Final Exam: 25%